Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP), based on a single trajectory of Markovian samples induced by a behavior policy. Focusing on a $\gamma$-discounted MDP with state space $\mathcal{S}$ and action space $\mathcal{A}$, we demonstrate that the $\ell_{\infty}$-based sample complexity of classical asynchronous Q-learning --- namely, the number of samples needed to yield an entrywise $\varepsilon$-accurate estimate of the Q-function --- is at most on the order of $\frac{1}{\mu_{\min}(1-\gamma)^5\varepsilon^2}+ \frac{t_{mix}}{\mu_{\min}(1-\gamma)}$ up to some logarithmic factor, provided that a proper constant learning rate is adopted. Here, $t_{mix}$ and $\mu_{\min}$ denote respectively the mixing time and the minimum state-action occupancy probability of the sample trajectory. The first term of this bound matches the sample complexity in the synchronous case with independent samples drawn from the stationary distribution of the trajectory. The second term reflects the cost taken for the empirical distribution of the Markovian trajectory to reach a steady state, which is incurred at the very beginning and becomes amortized as the algorithm runs. Encouragingly, the above bound improves upon the state-of-the-art result \cite{qu2020finite} by a factor of at least $|\mathcal{S}||\mathcal{A}|$ for all scenarios, and by a factor of at least $t_{mix}|\mathcal{S}||\mathcal{A}|$ for any sufficiently small accuracy level $\varepsilon$. Further, we demonstrate that the scaling on the effective horizon $\frac{1}{1-\gamma}$ can be improved by means of variance reduction.


翻译:Q- 学习的目的是根据行为政策的马科维样本的单一轨迹, 学习马可夫决定进程的最佳行动价值函数( 或Q- 功能 ) 。 以州空间$\ mathcal{S}$ 和动作空间$\ mathcal{S}} 美元和动作空间$\ mathcal{A} 以美元为基础, 我们证明, 以美元为基础的经典非同步Q- 学习的样本复杂性 - 即产生一个入点的美元- 瓦里西朗$- 准确估计的样本数量。 以美元为单位, 以美元为单位, 以美元为单位, 以美元===%xml=l=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
9+阅读 · 2021年4月8日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员