We derive non-asymptotic minimax bounds for the Hausdorff estimation of $d$-dimensional submanifolds $M \subset \mathbb{R}^D$ with (possibly) non-empty boundary $\partial M$. The model reunites and extends the most prevalent $\mathcal{C}^2$-type set estimation models: manifolds without boundary, and full-dimensional domains. We consider both the estimation of the manifold $M$ itself and that of its boundary $\partial M$ if non-empty. Given $n$ samples, the minimax rates are of order $O\bigl((\log n/n)^{2/d}\bigr)$ if $\partial M = \emptyset$ and $O\bigl((\log n/n)^{2/(d+1)}\bigr)$ if $\partial M \neq \emptyset$, up to logarithmic factors. In the process, we develop a Voronoi-based procedure that allows to identify enough points $O\bigl((\log n/n)^{2/(d+1)}\bigr)$-close to $\partial M$ for reconstructing it.


翻译:我们为Hausdorf 估算的美元值得出了非非表面的迷你界限。 美元值为M = subset\ mathbb{R ⁇ D$, 与( 可能) 非空边界为$ 美元。 模型集合并扩展了最常用的 $mathcal{C ⁇ 2 型估算模型: 没有边界的多元值, 和全维域。 我们既考虑对元值本身的估计, 也考虑对美元值为美元( 如果非空的话) 的边界值的估计 。 根据美元样本, 如果 $\\ bigl( log n/n)\\\\\\ d ⁇ bigr$( =\ spregyset $) 和 $O\ bigl( log n/n) 2/ (d+1) ⁇ bigr$。 我们开发了一个基于Voronioioi \ $\\\\\\ maq_\\ rig_ m1) 足够点( 美元/ big_\\\ big_ 美元) 。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
61+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
已删除
将门创投
3+阅读 · 2018年3月13日
干货 | 一文搞懂极大似然估计
AI100
7+阅读 · 2017年12月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年10月18日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
61+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
已删除
将门创投
3+阅读 · 2018年3月13日
干货 | 一文搞懂极大似然估计
AI100
7+阅读 · 2017年12月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员