Recent work argues that robust training requires substantially larger datasets than those required for standard classification. On CIFAR-10 and CIFAR-100, this translates into a sizable robust-accuracy gap between models trained solely on data from the original training set and those trained with additional data extracted from the "80 Million Tiny Images" dataset (TI-80M). In this paper, we explore how generative models trained solely on the original training set can be leveraged to artificially increase the size of the original training set and improve adversarial robustness to $\ell_p$ norm-bounded perturbations. We identify the sufficient conditions under which incorporating additional generated data can improve robustness, and demonstrate that it is possible to significantly reduce the robust-accuracy gap to models trained with additional real data. Surprisingly, we even show that even the addition of non-realistic random data (generated by Gaussian sampling) can improve robustness. We evaluate our approach on CIFAR-10, CIFAR-100, SVHN and TinyImageNet against $\ell_\infty$ and $\ell_2$ norm-bounded perturbations of size $\epsilon = 8/255$ and $\epsilon = 128/255$, respectively. We show large absolute improvements in robust accuracy compared to previous state-of-the-art methods. Against $\ell_\infty$ norm-bounded perturbations of size $\epsilon = 8/255$, our models achieve 66.10% and 33.49% robust accuracy on CIFAR-10 and CIFAR-100, respectively (improving upon the state-of-the-art by +8.96% and +3.29%). Against $\ell_2$ norm-bounded perturbations of size $\epsilon = 128/255$, our model achieves 78.31% on CIFAR-10 (+3.81%). These results beat most prior works that use external data.


翻译:最近的工作表明,强健的培训需要比标准分类要求的更大规模的数据集。在CIFAR-10和CIFAR-100中,这转化为完全以原始培训数据集的数据培训的模型与从“800万小图象”数据集(TI-80M)获取的额外数据培训的模型之间一个相当强的准确性差距。在本文中,我们探索仅以原始培训数据集培训的基因化模型如何能够被人为地提高原始培训数据集的规模,并将对抗性强性强提高到$_ell_p$的规范渗透。我们确定在何种条件下,纳入额外生成的数据可以提高稳健性,并表明有可能大大缩小由更多真实数据培训数据集所培训的模型(TI-80M)之间的准确性差距。我们甚至能够显示,即使增加非现实性随机性的数据(由Gaussian抽样抽样采集的)也能提高稳健性。我们用CFAR-10、CIFAR-100、SVHN和TiyIngNet的模型在美元-美元和美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-标准-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2021年5月21日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
45+阅读 · 2020年10月31日
Python图像处理,366页pdf,Image Operators Image Processing in Python
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
专知会员服务
62+阅读 · 2020年3月4日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2019年11月21日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员