By computing the rank correlation between attention weights and feature-additive explanation methods, previous analyses either invalidate or support the role of attention-based explanations as a faithful and plausible measure of salience. To investigate whether this approach is appropriate, we compare LIME, Integrated Gradients, DeepLIFT, Grad-SHAP, Deep-SHAP, and attention-based explanations, applied to two neural architectures trained on single- and pair-sequence language tasks. In most cases, we find that none of our chosen methods agree. Based on our empirical observations and theoretical objections, we conclude that rank correlation does not measure the quality of feature-additive methods. Practitioners should instead use the numerous and rigorous diagnostic methods proposed by the community.


翻译:通过计算注意权重和特性附加解释方法之间的等级相关性,以前的分析要么否定或支持基于注意的解释的作用,作为可靠和可信的突出度衡量标准。为了调查这一方法是否合适,我们比较LIME、综合梯度、DeepLIFT、Grad-SHAP、Deep-SHAP和基于注意的解释,这些解释适用于在单一和对等后语言任务方面受过培训的两个神经结构。在多数情况下,我们发现我们所选择的方法中没有一个是一致的。根据我们的经验观察和理论反对意见,我们的结论是,等级相关性不能衡量特性增加方法的质量。相反,从业者应该使用社区建议的众多和严格的诊断方法。

0
下载
关闭预览

相关内容

注意力机制综述
专知会员服务
203+阅读 · 2021年1月26日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
0+阅读 · 2021年8月17日
Arxiv
8+阅读 · 2021年7月15日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
14+阅读 · 2020年12月17日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
21+阅读 · 2019年8月21日
Metrics for Explainable AI: Challenges and Prospects
Arxiv
4+阅读 · 2018年12月11日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
Arxiv
0+阅读 · 2021年8月17日
Arxiv
8+阅读 · 2021年7月15日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
14+阅读 · 2020年12月17日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
21+阅读 · 2019年8月21日
Metrics for Explainable AI: Challenges and Prospects
Arxiv
4+阅读 · 2018年12月11日
Top
微信扫码咨询专知VIP会员