This letter proposes a novel deep learning framework (DLF) that addresses two major hurdles in the adoption of deep learning techniques for solving physics-based problems: 1) requirement of the large dataset for training the DL model, 2) consistency of the DL model with the physics of the phenomenon. The framework is generic in nature and can be applied to model a phenomenon from other fields of research too as long as its behaviour is known. To demonstrate the technique, a semi-supervised physics guided neural network (SPGNN) has been developed that predicts I-V characteristics of a gallium nitride-based high electron mobility transistor (GaN HEMT). A two-stage training method is proposed, where in the first stage, the DL model is trained via the unsupervised learning method using the I-V equations of a field-effect transistor as a loss function of the model that incorporates physical behaviors in the DL model and in the second stage, the DL model has been fine-tuned with a very small set of experimental data. The SPGNN significantly reduces the requirement of the training data by more than 80% for achieving similar or better performance than a traditional neural network (TNN) even for unseen conditions. The SPGNN predicts 32.4% of the unseen test data with less than 1% of error and only 0.4% of the unseen test data with more than 10% of error.


翻译:本信提出了一个新的深层次学习框架(DLF),它解决了在采用深深深学习技术解决基于物理的问题时遇到的两大障碍:(1) 培训DL模型需要大型数据集,(2) DL模型与该现象的物理物理相一致。这个框架具有通用性质,只要其行为为人所知,就可以用来模拟其他研究领域的现象。为了展示这一技术,已经开发了一个半监督的物理导神经网络(SPGNNN),它预测了以硝化 ⁇ 为基础的高电动晶体管(GaN HEMT)的I-V特性。提出了两阶段培训方法,在第一阶段,DL模型通过不受监督的学习方法培训,使用外地效应晶体管的I-V方程式作为模型的一种损失函数,将物理行为纳入DL模型和第二阶段,DLNURNM(SGNNNNNN)模型只用非常小的一组实验数据来微调调,其培训数据的要求比NEMOV的80%还要低。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
90+阅读 · 2021年6月29日
【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
211+阅读 · 2020年1月13日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deep Co-Training for Semi-Supervised Image Segmentation
Paraphrase Generation with Deep Reinforcement Learning
Arxiv
4+阅读 · 2018年6月1日
VIP会员
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员