Current conversational passage retrieval systems cast conversational search into ad-hoc search by using an intermediate query resolution step that places the user's question in context of the conversation. While the proposed methods have proven effective, they still assume the availability of large-scale question resolution and conversational search datasets. To waive the dependency on the availability of such data, we adapt a pre-trained token-level dense retriever on ad-hoc search data to perform conversational search with no additional fine-tuning. The proposed method allows to contextualize the user question within the conversation history, but restrict the matching only between question and potential answer. Our experiments demonstrate the effectiveness of the proposed approach. We also perform an analysis that provides insights of how contextualization works in the latent space, in essence introducing a bias towards salient terms from the conversation.


翻译:目前的对话通道检索系统通过使用中间查询解答步骤,将用户的问题与对话中的问题放在一起,从而将谈话搜索到特别的搜索中。虽然建议的方法已证明是有效的,但它们仍然假设可以提供大规模解答问题和对话搜索数据集。为避免对这些数据的可用性的依赖,我们调整了事先培训的象征性密集检索器,在不作其他微调的情况下进行谈话搜索。拟议方法允许将用户问题与对话史上的问题相关联,但只限制对问题和潜在答案的匹配。我们的实验展示了拟议方法的有效性。我们还进行了一项分析,对潜在空间背景化如何运作提供了深刻的洞察力,实质上引入了对对话中突出术语的偏向。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
50+阅读 · 2020年2月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Neural Prompt Search
Arxiv
0+阅读 · 2022年6月9日
Jewelry Shop Conversational Chatbot
Arxiv
0+阅读 · 2022年6月9日
Arxiv
0+阅读 · 2022年6月9日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Arxiv
26+阅读 · 2018年9月21日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Neural Prompt Search
Arxiv
0+阅读 · 2022年6月9日
Jewelry Shop Conversational Chatbot
Arxiv
0+阅读 · 2022年6月9日
Arxiv
0+阅读 · 2022年6月9日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Arxiv
26+阅读 · 2018年9月21日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员