One method to compute multiple precision integer quotients is to use a Newton iteration with multiple precision fixed point or floating point values. On one hand, this allows quotients to be calculated efficiently by employing an efficient multiplication method. On the other hand, this leads to a library structure where exact and approximate arithmetic are interdependent. This paper develops the concept of a shifted inverse and modified Newton iteration to compute quotients efficiently using whole numbers only. The method is equally applicable to computing polynomial quotients efficiently.
翻译:一种计算多精度整数商数的方法是使用牛顿迭代法,其中需要使用多精度定点或浮点值。一方面,这种方法通过采用高效的乘法方法,使商数能够高效地计算。另一方面,这导致了一个库结构,其中精确和近似算法是相互依存的。本文开发了一种移位倒数和修改的牛顿迭代法,仅使用整数就能高效地计算商数。该方法同样适用于高效计算多项式商数。