We address the problem of image color quantization using a Maximum Entropy based approach. We argue that adding thermal noise to the system yields better visual impressions than that obtained from a simple energy minimization. To quantify this observation, we introduce the coarse-grained quantization error, and seek the optimal temperature which minimizes this new observable. By comparing images with different structural properties, we show that the optimal temperature is a good proxy for complexity at different scales. Finally, having shown that the convoluted error is a key observable, we directly minimize it using a Monte Carlo algorithm to generate a new series of quantized images. Adopting an original approach based on the informativity of finite size samples, we are able to determine the optimal convolution parameter leading to the best visuals.
翻译:我们使用以最大英特罗比为基础的方法来解决图像色度量化问题。 我们争辩说, 在系统中添加热噪声比简单的能量最小化方法产生更好的视觉印象。 为了量化这一观察, 我们引入粗微的微量化错误, 并寻求最佳温度, 将这一新可见度最小化。 我们通过将图像与不同结构属性进行比较, 显示最佳温度是不同尺度复杂度的好替代物。 最后, 我们通过显示熔化错误是关键可观测物, 我们直接将其最小化, 使用蒙特卡洛算法来生成一系列新的量化图像。 采用基于定数大小样本的无格式性的原始方法, 我们能够确定导致最佳视觉的最优化的卷变参数 。