When perceiving the world from multiple viewpoints, humans have the ability to reason about the complete objects in a compositional manner even when the object is completely occluded from partial viewpoints. Meanwhile, humans can imagine the novel views after observing multiple viewpoints. The remarkable recent advance in multi-view object-centric learning leaves some problems: 1) the partially or completely occluded shape of objects can not be well reconstructed. 2) the novel viewpoint prediction depends on expensive viewpoint annotations rather than implicit view rules. This makes the agent fail to perform like humans. In this paper, we introduce a time-conditioned generative model for videos. To reconstruct the complete shape of the object accurately, we enhance the disentanglement between different latent representations: view latent representations are jointly inferred based on the Transformer and then cooperate with the sequential extension of Slot Attention to learn object-centric representations. The model also achieves the new ability: Gaussian processes are employed as priors of view latent variables for generation and novel-view prediction without viewpoint annotations. Experiments on multiple specifically designed synthetic datasets have shown that the proposed model can 1) make the video decomposition, 2) reconstruct the complete shapes of objects, and 3) make the novel viewpoint prediction without viewpoint annotations.


翻译:当从多种角度观察世界时,人类有能力以构思方式解释完整的物体,即使对象完全从局部角度被完全隐蔽。 同时,人类可以在观察多重观点后想象新观点。 多视角对象中心学习的近期显著进步留下一些问题:(1) 部分或完全隐蔽的物体形状无法很好地重建。 (2) 新的视觉预测取决于昂贵的观点说明,而不是隐含的视图规则。 这使得代理人无法像人类一样执行。 在本文中, 我们引入一个有时间条件的视频基因化模型。 要准确地重建物体的完整形状, 我们就可以加强不同潜在表达面之间的混乱: 查看潜在表达面是根据变异器共同推断的, 然后与斯洛特注意的顺序延伸合作, 学习对象中心表达面。 该模型还实现了新的能力: 高斯进程被用作生成和新观点预测的视觉潜在变量的前视线。 对多个专门设计的合成数据集的实验显示, 为了精确地重建对象的完整模型能够( 1) 使视频的图像变异定位3 。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月13日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员