Deep learning techniques for separating audio into different sound sources face several challenges. Standard architectures require training separate models for different types of audio sources. Although some universal separators employ a single model to target multiple sources, they have difficulty generalizing to unseen sources. In this paper, we propose a three-component pipeline to train a universal audio source separator from a large, but weakly-labeled dataset: AudioSet. First, we propose a transformer-based sound event detection system for processing weakly-labeled training data. Second, we devise a query-based audio separation model that leverages this data for model training. Third, we design a latent embedding processor to encode queries that specify audio targets for separation, allowing for zero-shot generalization. Our approach uses a single model for source separation of multiple sound types, and relies solely on weakly-labeled data for training. In addition, the proposed audio separator can be used in a zero-shot setting, learning to separate types of audio sources that were never seen in training. To evaluate the separation performance, we test our model on MUSDB18, while training on the disjoint AudioSet. We further verify the zero-shot performance by conducting another experiment on audio source types that are held-out from training. The model achieves comparable Source-to-Distortion Ratio (SDR) performance to current supervised models in both cases.


翻译:将音频分离为不同声音源的深层学习技术面临若干挑战。标准架构要求为不同类型的音频源制定不同的培训模式。虽然一些通用分隔器使用单一模式来针对多个来源,但它们很难向无形来源推广。在本文中,我们提议了一个三部分管道,用于从大型但标签不高的数据集中培训一个通用音源分离器:AudioSet。首先,我们提议了一个基于变压器的音频事件探测系统,用于处理标签不高的培训数据。第二,我们设计了一个基于查询的音频分离模型,利用这些数据进行模型培训。第三,我们设计了一个潜在的嵌入处理器,用于编码查询,指定音频分离目标,允许零弹射概括。我们的方法使用单一模式来将多种声音类型的来源分离,并完全依靠标签不高的数据进行培训。此外,拟议的音频分离器检测系统可以在零光谱环境中使用,学习在培训中从未看到的不同类型的音频源源。我们测试了在MUSB18上的分离模型,同时进行有关音频分离性能测试,同时进行不同版本的演示模式。我们用的是,我们从零互动SDRDREDRTB 来进行测试。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
17+阅读 · 2021年2月15日
Learning to See Through Obstructions
Arxiv
7+阅读 · 2020年4月2日
Paraphrase Generation with Deep Reinforcement Learning
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Object Relation Detection Based on One-shot Learning
Arxiv
3+阅读 · 2018年7月16日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员