The path to higher network autonomy in 6G lies beyond the mere optimization of key performance indicators (KPIs). While KPIs have enabled automation gains under TM Forum Levels 1--3, they remain numerical abstractions that act only as proxies for the real essence of communication networks: seamless connectivity, fairness, adaptability, and resilience. True autonomy requires perceiving and reasoning over the network environment as it is. Such progress can be achieved through \emph{agentic AI}, where large language model (LLM)-powered agents perceive multimodal telemetry, reason with memory, negotiate across domains, and act via APIs to achieve multi-objective goals. However, deploying such agents introduces the challenge of cognitive biases inherited from human design, which can distort reasoning, negotiation, tool use, and actuation. Between neuroscience and AI, this paper provides a tutorial on a selection of well-known biases, including their taxonomy, definition, mathematical formulation, emergence in telecom systems and the commonly impacted agentic components. The tutorial also presents various mitigation strategies tailored to each type of bias. The article finally provides two practical use-cases, which tackle the emergence, impact and mitigation gain of some famous biases in 6G inter-slice and cross-domain management. In particular, anchor randomization, temporal decay and inflection bonus techniques are introduced to specifically address anchoring, temporal and confirmation biases. This avoids that agents stick to the initial high resource allocation proposal or decisions that are recent and/or confirming a prior hypothesis. By grounding decisions in a richer and fairer set of past experiences, the quality and bravery of the agentic agreements in the second use-case, for instance, are leading to $\times 5$ lower latency and around $40\%$ higher energy saving.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员