A partial orientation $\vec{H}$ of a graph $G$ is a weak $r$-guidance system if for any two vertices at distance at most $r$ in $G$, there exists a shortest path $P$ between them such that $\vec{H}$ directs all but one edge in $P$ towards this edge. In case $\vec{H}$ has bounded maximum outdegree, this gives an efficient representation of shortest paths of length at most $r$ in $G$. We show that graphs from many natural graph classes admit such weak guidance systems, and study the algorithmic aspects of this notion.
翻译:以美元表示的部分方向$\vec{H}$G$是一个薄弱的指导系统,如果对于以美元表示的距离最高为美元的任何两个顶点而言,其间存在一条最短的路径,即美元等于美元,因此美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元的部分方向。如果美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元,那么如果美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于