We introduce a Channel Distribution Information (CDI)-aware Generative Adversarial Network (GAN), designed to address the unique challenges of adversarial attacks in wireless communication systems. The generator in this CDI-aware GAN maps random input noise to the feature space, generating perturbations intended to deceive a target modulation classifier. Its discriminators play a dual role: one enforces that the perturbations follow a Gaussian distribution, making them indistinguishable from Gaussian noise, while the other ensures these perturbations account for realistic channel effects and resemble no-channel perturbations. Our proposed CDI-aware GAN can be used as an attacker and a defender. In attack scenarios, the CDI-aware GAN demonstrates its prowess by generating robust adversarial perturbations that effectively deceive the target classifier, outperforming known methods. Furthermore, CDI-aware GAN as a defender significantly improves the target classifier's resilience against adversarial attacks.
翻译:暂无翻译