Malicious attacks, malware, and ransomware families pose critical security issues to cybersecurity, and it may cause catastrophic damages to computer systems, data centers, web, and mobile applications across various industries and businesses. Traditional anti-ransomware systems struggle to fight against newly created sophisticated attacks. Therefore, state-of-the-art techniques like traditional and neural network-based architectures can be immensely utilized in the development of innovative ransomware solutions. In this paper, we present a feature selection-based framework with adopting different machine learning algorithms including neural network-based architectures to classify the security level for ransomware detection and prevention. We applied multiple machine learning algorithms: Decision Tree (DT), Random Forest (RF), Naive Bayes (NB), Logistic Regression (LR) as well as Neural Network (NN)-based classifiers on a selected number of features for ransomware classification. We performed all the experiments on one ransomware dataset to evaluate our proposed framework. The experimental results demonstrate that RF classifiers outperform other methods in terms of accuracy, F-beta, and precision scores.
翻译:恶意攻击、恶意软件和赎金软件家庭对网络安全构成重大安全问题,可能对计算机系统、数据中心、网络和各种行业和企业的移动应用造成灾难性损害。传统的反兰索软件系统在与新创造的尖端攻击作斗争方面挣扎。因此,在开发创新的赎金软件解决方案时,可以大量使用传统和神经网络建筑等最先进的技术。在本文件中,我们提出了一个基于特征的筛选框架,采用不同的机器学习算法,包括神经网络结构,对赎金软件的检测和预防进行分类。我们采用了多种机器学习算法:决策树、随机森林(RF)、Nive Bayes(NB)、后勤倒退(LR)以及基于神经网络(NN)的分类方法,这些方法有选择地用于赎金软件的分类。我们在一个赎金软件数据集上进行了所有实验,以评价我们提议的框架。实验结果显示,俄罗斯联邦的分类方法在准确性、F-贝塔和精确分数方面优于其他方法。