We study the joint occurrence of large values of a Markov random field or undirected graphical model associated to a block graph. On such graphs, containing trees as special cases, we aim to generalize recent results for extremes of Markov trees. Every pair of nodes in a block graph is connected by a unique shortest path. These paths are shown to determine the limiting distribution of the properly rescaled random field given that a fixed variable exceeds a high threshold. When the sub-vectors induced by the blocks follow H\"usler-Reiss extreme value copulas, the global Markov property of the original field induces a particular structure on the parameter matrix of the limiting max-stable H\"usler-Reiss distribution. The multivariate Pareto version of the latter turns out to be an extremal graphical model according to the original block graph. Moreover, thanks to these algebraic relations, the parameters are still identifiable even if some variables are latent.
翻译:我们研究与块形图相关的马尔科夫随机字段或非方向图形模型的大型共同值。 在含有树的图形中, 我们的目标是对极端马科夫树的最近结果进行概括。 块形图中的每对节点都用一个独特的最短路径连接。 这些路径显示来确定适当重新标定随机字段的有限分布, 因为固定变量超过一个高阈值。 当区块引发的子矢量在H\" usler- Reiss 极端值合差值之后, 原始字段的全局 Markov 属性在限制最大表 H\\' usler- Reiss 分布的参数矩阵上产生特定结构。 后一个区块图的多变量 Pareto 版本被显示为根据原始块形图显示的极端图形模型。 此外, 由于这些代数关系, 参数仍然可以识别, 即使某些变量是隐含的 。