Let $G$ be a large (simple, unlabeled) dense graph on $n$ vertices. Suppose that we only know, or can estimate, the empirical distribution of the number of subgraphs $F$ that each vertex in $G$ participates in, for some fixed small graph $F$. How many other graphs would look essentially the same to us, i.e., would have a similar local structure? In this paper, we derive upper and lower bounds on the number graphs whose empirical distribution lies close (in the Kolmogorov-Smirnov distance) to that of $G$. Our bounds are given as solutions to a maximum entropy problem on random graphs of a fixed size $k$ that does not depend on $n$, under $d$ global density constraints. The bounds are asymptotically close, with a gap that vanishes with $d$ at a rate that depends on the concentration function of the center of the Kolmogorov-Smirnov ball.
翻译:让$G$成为大(简单、未贴标签的)坚硬的顶点图。 假设我们只知道或者能够估计每个G$的顶点所参与的基点数量的实际分配情况, 对于某些固定的小块图来说, 美元是一个固定的基点。 对于我们来说, 有多少其他的图形看起来基本相同, 也就是说, 会有一个类似的本地结构? 在本文中, 我们从( 科尔莫戈洛夫- 斯米尔诺夫距离) 实际分布接近于$G$ 的数字图上得出上下限。 我们的边框作为解决方案, 解决固定大小为$k$的随机图上的最大环球问题, 不受美元的全球密度限制 。 边框与美元几乎一样, 以美元消失的距离取决于 Kolmogorov- Smirnov 球中心的集中功能。