Optimal transport (OT) theory underlies many emerging machine learning (ML) methods nowadays solving a wide range of tasks such as generative modeling, transfer learning and information retrieval. These latter works, however, usually build upon a traditional OT setup with two distributions, while leaving a more general multi-marginal OT formulation somewhat unexplored. In this paper, we study the multi-marginal OT (MMOT) problem and unify several popular OT methods under its umbrella by promoting structural information on the coupling. We show that incorporating such structural information into MMOT results in an instance of a different of convex (DC) programming problem allowing us to solve it numerically. Despite high computational cost of the latter procedure, the solutions provided by DC optimization are usually as qualitative as those obtained using currently employed optimization schemes.
翻译:最佳运输(OT)理论是许多新兴机器学习(ML)方法的基础,如今,这些方法解决了诸如基因模型、转让学习和信息检索等广泛任务,但后者通常建立在传统的OT结构上,有两种分布方式,而使更普遍的多边性OT配方略为未探索。在本文中,我们研究多边性OT问题,并通过推广关于结合的结构信息,将一些受欢迎的OT方法统一到其保护伞之下。我们表明,将这种结构性信息纳入MMOOT的结果是,在一种不同的convex(DC)编程问题中,使我们能够从数字上解决这个问题。尽管后一种程序的计算成本很高,但DC优化提供的解决办法通常与目前使用优化方案获得的方法一样具有质素量。