The optimal transport problem has many applications in machine learning, physics, biology, economics, etc. Although its goal is very clear and mathematically well-defined, finding its optimal solution can be challenging for large datasets in high-dimensional space. Here, we propose a homotopy algorithm that first transforms the problem into an easy form, by changing the target distribution. It then transforms the problem back to the original form through a series of iterations, tracing a path of solutions until it finds the optimal solution for the original problem. We define the homotopy path as a subspace rotation based on the orthogonal Procrustes problem, and then we discretize the homotopy path using eigenvalue decomposition of the rotation matrix. Our goal is to provide an algorithm with complexity bound $\mathcal{O}(n^2 \log(n))$, faster than the existing methods in the literature.
翻译:最佳运输问题在机器学习、物理、生物学、经济学等方面有许多应用。 尽管它的目标非常明确,数学上也非常明确, 但找到最佳的解决方案对高维空间的大型数据集来说可能具有挑战性。 在这里, 我们提出一个同质算法, 通过改变目标分布, 将问题首先转换为简单的形式。 然后通过一系列迭代将问题转换为原始形式, 追踪解决办法的路径, 直到找到解决原始问题的最佳办法 。 我们根据正方形蛋白质问题, 将同质体路径定义为子空间旋转, 然后使用旋转矩阵的双元值脱腐化法将同质路径分离。 我们的目标是提供一种复杂、 $mathcal{O} (n% 2\log( n)$) 的算法, 比文献中的现有方法要快得多 。