In this paper, we give a new characterization of the cut locus of a point on a compact Riemannian manifold as the zero set of the optimal transport density solution of the Monge-Kantorovich equations, a PDE formulation of the optimal transport problem with cost equal to the geodesic distance. Combining this result with an optimal transport numerical solver based on the so-called dynamical Monge-Kantorovich approach, we propose a novel framework for the numerical approximation of the cut locus of a point in a manifold. We show the applicability of the proposed method on a few examples settled on 2d-surfaces embedded in $R^{3}$ and discuss advantages and limitations.
翻译:在本文中,我们对紧凑的里伊曼式方块的一个点的临界点作了新的定性,作为蒙古-坎托罗维奇方程式最佳运输密度解决方案的零一组,这是对最佳运输问题的PDE公式,其成本与大地测量距离相等。将这一结果与基于所谓的动态蒙古-坎托罗维奇方法的最佳运输数字求解器结合起来,我们提出了一个新的框架,用于将一个点的截断点的数值近似。我们展示了拟议方法对嵌入2度地表的几例实例的适用性,并讨论了优缺点和局限性。