Graph Convolutional Networks (GCNs) have recently attracted vast interest and achieved state-of-the-art performance on graphs, but its success could typically hinge on careful training with amounts of expensive and time-consuming labeled data. To alleviate labeled data scarcity, self-training methods have been widely adopted on graphs by labeling high-confidence unlabeled nodes and then adding them to the training step. In this line, we empirically make a thorough study for current self-training methods on graphs. Surprisingly, we find that high-confidence unlabeled nodes are not always useful, and even introduce the distribution shift issue between the original labeled dataset and the augmented dataset by self-training, severely hindering the capability of self-training on graphs. To this end, in this paper, we propose a novel Distribution Recovered Graph Self-Training framework (DR-GST), which could recover the distribution of the original labeled dataset. Specifically, we first prove the equality of loss function in self-training framework under the distribution shift case and the population distribution if each pseudo-labeled node is weighted by a proper coefficient. Considering the intractability of the coefficient, we then propose to replace the coefficient with the information gain after observing the same changing trend between them, where information gain is respectively estimated via both dropout variational inference and dropedge variational inference in DR-GST. However, such a weighted loss function will enlarge the impact of incorrect pseudo labels. As a result, we apply the loss correction method to improve the quality of pseudo labels. Both our theoretical analysis and extensive experiments on five benchmark datasets demonstrate the effectiveness of the proposed DR-GST, as well as each well-designed component in DR-GST.


翻译:革命网络(GCN)最近吸引了巨大的兴趣,并实现了图表上最先进的节点,但成功与否通常取决于使用大量昂贵和耗时的标签数据进行仔细培训。为了减轻标签数据稀缺性,在图表上广泛采用了自我培训方法,贴上高自信无标签节点标签,然后将其添加到培训步骤。在这条线上,我们实证地对当前图表上的自培训方法进行了彻底研究。令人惊讶的是,我们发现高信心无标签的节点并不总是有用,甚至可能引入原始标签数据集与自我培训增加的数据集之间的分配变化问题。为了减轻标签数据稀缺的数据稀缺,自培训方法在图表上被广泛广泛采用。为此,我们提议了一个新的发行回收的图表自修框架(DR-GST),这个框架可以恢复原有标签数据集的分布。我们首先证明,在分布变换的自我培训框架下,在每次贴标签的质量数据集中,在质量和人口分布分配中,如果每个不准确的自译的自译的自译的自译节节点都会在自我分析中,在不断变。

7
下载
关闭预览

相关内容

专知会员服务
58+阅读 · 2021年4月29日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年6月14日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
27+阅读 · 2020年6月19日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
专知会员服务
58+阅读 · 2021年4月29日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Arxiv
23+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年6月14日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
27+阅读 · 2020年6月19日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
17+阅读 · 2019年3月28日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员