Electromagnetic forming and perforations (EMFP) are complex and innovative high strain rate processes that involve electromagnetic-mechanical interactions for simultaneous metal forming and perforations. Instead of spending costly resources on repetitive experimental work, a properly designed numerical model can be effectively used for detailed analysis and characterization of the complex process. A coupled finite element (FE) model is considered for analyzing the multi-physics of the EMFP because of its robustness and improved accuracy. In this work, a detailed understanding of the process has been achieved by numerically simulating forming and perforations of Al6061-T6 tube for 12 holes and 36 holes with two different punches, i.e., pointed and concave punches using Ls-Dyna software. In order to shed light on EMFP physics, a comparison between experimental data and the formulated numerical simulation has been carried out to compare the average hole diameter and the number of perforated holes, for different types of punches and a range of discharge energies. The simulated results show acceptable agreement with experimental studies, with maximum deviations being less than or equal to 6%, which clearly illustrates the efficacy and capability of the developed coupled Multi-physics FE model.
翻译:暂无翻译