We present TartanDrive, a large scale dataset for learning dynamics models for off-road driving. We collected a dataset of roughly 200,000 off-road driving interactions on a modified Yamaha Viking ATV with seven unique sensing modalities in diverse terrains. To the authors' knowledge, this is the largest real-world multi-modal off-road driving dataset, both in terms of number of interactions and sensing modalities. We also benchmark several state-of-the-art methods for model-based reinforcement learning from high-dimensional observations on this dataset. We find that extending these models to multi-modality leads to significant performance on off-road dynamics prediction, especially in more challenging terrains. We also identify some shortcomings with current neural network architectures for the off-road driving task. Our dataset is available at https://github.com/castacks/tartan_drive.
翻译:我们向TartanDrive提供大规模数据集,用于学习越野驾驶的动态模型;我们收集了一套大约200,000个关于经过改造的亚马哈·维京越野驱动式电视的外向驱动互动的数据集,该数据集有7种独特的感测方式,分布在不同的地形;据作者所知,这是在互动和感测方式数量方面最大的真实世界多模式越野驱动数据集;我们还从该数据集的高度观测中为基于模型的强化学习设定了几个最先进的方法;我们发现,将这些模型扩大到多模式导致在越野动态预测上取得显著成绩,特别是在更具挑战性的地形上。我们还查明了目前用于越野驾驶任务的神经网络结构的一些缺陷。我们的数据集可在https://github.com/castacks/tartan_drive查阅。