Over the years, datasets have been developed for various object detection tasks. Object detection in the maritime domain is essential for the safety and navigation of ships. However, there is still a lack of publicly available large-scale datasets in the maritime domain. To overcome this challenge, we present KOLOMVERSE, an open large-scale image dataset for object detection in the maritime domain by KRISO (Korea Research Institute of Ships and Ocean Engineering). We collected 5,845 hours of video data captured from 21 territorial waters of South Korea. Through an elaborate data quality assessment process, we gathered around 2,151,470 4K resolution images from the video data. This dataset considers various environments: weather, time, illumination, occlusion, viewpoint, background, wind speed, and visibility. The KOLOMVERSE consists of five classes (ship, buoy, fishnet buoy, lighthouse and wind farm) for maritime object detection. The dataset has images of 3840$\times$2160 pixels and to our knowledge, it is by far the largest publicly available dataset for object detection in the maritime domain. We performed object detection experiments and evaluated our dataset on several pre-trained state-of-the-art architectures to show the effectiveness and usefulness of our dataset. The dataset is available at: \url{https://github.com/MaritimeDataset/KOLOMVERSE}.
翻译:多年来,为各种物体探测任务开发了数据集。海洋领域的物体探测对船舶安全和航行至关重要。然而,海洋领域仍然缺乏公开提供的大型数据集。为克服这一挑战,我们提供了KOLOMVERSE,这是KRISO(韩国船舶和海洋工程研究所)在海洋领域探测物体的开放大型图像数据集。我们从韩国21个领水收集了5 845小时的录像数据。我们通过一个详细的数据质量评估程序,从视频数据数据中收集了大约2 151 470 4K分辨率图像。这个数据集考虑到各种环境:天气、时间、照明、封闭度、视角、背景、风速和可见度。 KOLOMVERSE由五类(船舶、浮标、鱼网浮标、灯塔和风力农场)组成,用于海洋物体探测。该数据集有3 840 美元/ timethurth 2160 pixels和我们的知识,它远是海洋领域用于物体探测的可公开获取的最大数据集。我们进行了现有的数据测试和数据系统前的状态。我们进行了实地数据测试,以展示了我们现有的数据结构。我们现有的数据。