We introduce $\textit{Stein transport}$, a novel methodology for Bayesian inference designed to efficiently push an ensemble of particles along a predefined curve of tempered probability distributions. The driving vector field is chosen from a reproducing kernel Hilbert space and can be derived either through a suitable kernel ridge regression formulation or as an infinitesimal optimal transport map in the Stein geometry. The update equations of Stein transport resemble those of Stein variational gradient descent (SVGD), but introduce a time-varying score function as well as specific weights attached to the particles. While SVGD relies on convergence in the long-time limit, Stein transport reaches its posterior approximation at finite time $t=1$. Studying the mean-field limit, we discuss the errors incurred by regularisation and finite-particle effects, and we connect Stein transport to birth-death dynamics and Fisher-Rao gradient flows. In a series of experiments, we show that in comparison to SVGD, Stein transport not only often reaches more accurate posterior approximations with a significantly reduced computational budget, but that it also effectively mitigates the variance collapse phenomenon commonly observed in SVGD.
翻译:暂无翻译