The tremendous growth in smart devices has uplifted several security threats. One of the most prominent threats is malicious software also known as malware. Malware has the capability of corrupting a device and collapsing an entire network. Therefore, its early detection and mitigation are extremely important to avoid catastrophic effects. In this work, we came up with a solution for malware detection using state-of-the-art natural language processing (NLP) techniques. Our main focus is to provide a lightweight yet effective classifier for malware detection which can be used for heterogeneous devices, be it a resource constraint device or a resourceful machine. Our proposed model is tested on the benchmark data set with an accuracy and log loss score of 99.13 percent and 0.04 respectively.
翻译:智能设备的巨大增长已经消除了若干安全威胁。 最突出的威胁之一是恶意软件,也称为恶意软件。 Malware有能力腐蚀一个装置并摧毁整个网络。 因此, 早期发现和减缓它对于避免灾难性影响极为重要。 在这项工作中, 我们想出了一个解决方案, 使用最先进的自然语言处理技术来检测恶意软件。 我们的主要重点是提供一种轻而有效的分类器, 用于检测恶意软件, 可用于多种设备, 不管是资源限制装置还是机智机器。 我们提议的模型在基准数据集上测试, 准确率和日志损失得分分别为99.13%和0.04。