Apps and devices (mobile devices, web browsers, IoT, VR, voice assistants, etc.) routinely collect user data, and send them to first- and third-party servers through the network. Recently, there is a lot of interest in (1) auditing the actual data collection practices of those systems; and also in (2) checking the consistency of those practices against the statements made in the corresponding privacy policies. In this paper, we argue that the contextual integrity (CI) tuple can be the basic building block for defining and implementing such an auditing framework. We elaborate on the special case where the tuple is partially extracted from the network traffic generated by the end-device of interest, and partially from the corresponding privacy policies using natural language processing (NLP) techniques. Along the way, we discuss related bodies of work and representative examples that fit into that framework. More generally, we believe that CI can be the building block not only for auditing at the edge, but also for specifying privacy policies and system APIs. We also discuss limitations and directions for future work.


翻译:应用程序和设备(移动设备、Web浏览器、物联网(IoT)、虚拟现实(VR)、语音助手等)常规收集用户数据,并通过网络将其发送到一级和三级方服务器。最近,人们对(1)审核这些系统的实际数据收集实践和(2)检查这些实践是否与相应的隐私政策声明一致产生了很大的兴趣。在本文中,我们认为上下文完整性(CI)元组可以成为定义和实现这种审计框架的基本构建块。我们详细阐述了这种情况,其中元组部分从所关心的端设备生成的网络流量中部分抽取,部分使用自然语言处理(NLP)技术从相应的隐私政策中提取。同时,我们讨论了相关的研究工作和适用于该框架的代表性示例。更一般地说,我们认为CI不仅可以成为边缘端的审计构建块,也可以成为指定隐私政策和系统API的构建块。我们还讨论了局限性和未来工作的方向。

0
下载
关闭预览

相关内容

【ICDM2022教程】多目标优化与推荐,173页ppt
专知会员服务
44+阅读 · 2022年12月24日
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
专知会员服务
15+阅读 · 2021年8月25日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【数据集】新的YELP数据集官方下载
机器学习研究会
16+阅读 · 2017年8月31日
【推荐】深度学习思维导图
机器学习研究会
15+阅读 · 2017年8月20日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
Arxiv
92+阅读 · 2020年2月28日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【数据集】新的YELP数据集官方下载
机器学习研究会
16+阅读 · 2017年8月31日
【推荐】深度学习思维导图
机器学习研究会
15+阅读 · 2017年8月20日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员