Diagnostic pathology, which is the basis and gold standard of cancer diagnosis, provides essential information on the prognosis of the disease and vital evidence for clinical treatment. Tumor region detection, subtype and grade classification are the fundamental diagnostic indicators for renal cell carcinoma (RCC) in whole-slide images (WSIs). However, pathological diagnosis is subjective, differences in observation and diagnosis between pathologists is common in hospitals with inadequate diagnostic capacity. The main challenge for developing deep learning based RCC diagnostic system is the lack of large-scale datasets with precise annotations. In this work, we proposed a deep learning-based framework for analyzing histopathological images of patients with renal cell carcinoma, which has the potential to achieve pathologist-level accuracy in diagnosis. A deep convolutional neural network (InceptionV3) was trained on the high-quality annotated dataset of The Cancer Genome Atlas (TCGA) whole-slide histopathological image for accurate tumor area detection, classification of RCC subtypes, and ISUP grades classification of clear cell carcinoma subtypes. These results suggest that our framework can help pathologists in the detection of cancer region and classification of subtypes and grades, which could be applied to any cancer type, providing auxiliary diagnosis and promoting clinical consensus.


翻译:作为癌症诊断的基础和金质标准,诊断病理学是癌症诊断的基础和金质标准,它提供了该疾病预测的基本信息以及临床治疗的重要证据。肿瘤区域检测、亚型和品级分类是全滑动图像中肾细胞癌综合症(RCC)的基本诊断指标。但是,病理诊断是主观的,病理学家之间的观察和诊断差异在诊断能力不足的医院中很常见。发展基于深学习的RCC诊断系统的主要挑战是缺乏具有准确说明的大规模数据集。在这项工作中,我们提出了一个基于深层次学习的框架,用于分析肾细胞癌细胞癌病人的病理图象,这有可能在诊断中达到病理学家水平的准确性。一个深层进化神经网络(InceptionV3)接受了关于癌症基因组图集(TCGA)整体沉积病理学图集的高质量附加说明数据集的培训,用于准确的肿瘤地区检测、RCC子类型分类,以及USP的细胞细胞病理学分级分类。我们任何应用的细胞细胞细胞细胞细胞癌分型子和临床等级的诊断方法都能够提供我们用于诊断的诊断的诊断和病理学的分类的分类。这些结果可以作为我们用于向癌症亚型癌症类的诊断的诊断和类和类的分类的分类。这些分类的分类。这些分类。这些分类框架可以提供一种诊断的诊断。这些分类。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
32+阅读 · 2021年3月8日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Image Segmentation Using Deep Learning: A Survey
Arxiv
45+阅读 · 2020年1月15日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员