Recently, sequence-to-sequence (seq-to-seq) models have been successfully applied in text-to-speech (TTS) to synthesize speech for single-language text. To synthesize speech for multiple languages usually requires multi-lingual speech from the target speaker. However, it is both laborious and expensive to collect high-quality multi-lingual TTS data for the target speakers. In this paper, we proposed to use low-quality code-switched found data from the non-target speakers to achieve cross-lingual voice cloning for the target speakers. Experiments show that our proposed method can generate high-quality code-switched speech in the target voices in terms of both naturalness and speaker consistency. More importantly, we find that our method can achieve a comparable result to the state-of-the-art (SOTA) performance in cross-lingual voice cloning.
翻译:最近,从顺序到顺序(seq-seq)模式成功地应用于文本到语音(TTS),以合成单一语言文本的语音。合成多种语言的语音通常需要目标发言者的多语种发言。然而,为目标发言者收集高质量的多语种TTS数据既费力又费钱。在本文中,我们建议使用非目标发言者的低质量代码转换发现的数据,为目标发言者实现跨语言语音克隆。实验表明,我们提议的方法可以在目标声音中产生高质量的代码开动的语音,既包括自然特性,也包括发言者的一致性。更重要的是,我们发现我们的方法可以取得与跨语言语音克隆中最先进的(SOTA)性能相当的结果。