Purpose: Considering several patients screened due to COVID-19 pandemic, computer-aided detection has strong potential in assisting clinical workflow efficiency and reducing the incidence of infections among radiologists and healthcare providers. Since many confirmed COVID-19 cases present radiological findings of pneumonia, radiologic examinations can be useful for fast detection. Therefore, chest radiography can be used to fast screen COVID-19 during the patient triage, thereby determining the priority of patient's care to help saturated medical facilities in a pandemic situation. Methods: In this paper, we propose a new learning scheme called self-supervised transfer learning for detecting COVID-19 from chest X-ray (CXR) images. We compared six self-supervised learning (SSL) methods (Cross, BYOL, SimSiam, SimCLR, PIRL-jigsaw, and PIRL-rotation) with the proposed method. Additionally, we compared six pretrained DCNNs (ResNet18, ResNet50, ResNet101, CheXNet, DenseNet201, and InceptionV3) with the proposed method. We provide quantitative evaluation on the largest open COVID-19 CXR dataset and qualitative results for visual inspection. Results: Our method achieved a harmonic mean (HM) score of 0.985, AUC of 0.999, and four-class accuracy of 0.953. We also used the visualization technique Grad-CAM++ to generate visual explanations of different classes of CXR images with the proposed method to increase the interpretability. Conclusions: Our method shows that the knowledge learned from natural images using transfer learning is beneficial for SSL of the CXR images and boosts the performance of representation learning for COVID-19 detection. Our method promises to reduce the incidence of infections among radiologists and healthcare providers.
翻译:目标:考虑到由于COVID-19大流行而筛查的若干病人,计算机辅助检测在协助临床工作流程效率和降低放射科和保健提供者感染病例率方面具有巨大的潜力。由于许多经确认的COVID-19案例显示肺炎的放射结果,因此放射检查可以用于快速检测。因此,在病人剖析期间,胸部放射法可用于快速筛查COVID-1919,从而确定病人护理的优先事项,以帮助在大流行病情况下饱和医疗设施。方法:在本文件中,我们提出一个新的学习计划,称为自我监督传输学习,以便从胸部X光(CXRR)图像中检测COVI-19。我们比较了六种自监督学习方法(SSL)、肺炎放射检查方法(Cross、BYOL、SimSiam、SimCLRRR、PIRL-jigaw和PIRL-rotation)和拟议方法。此外,我们比较了六种预先培训的DCNNF(ResNet18、ResNet50、ResNet101、CheXNetNet、DenseNet201和In-RV3)图像显示从胸X图像显示CONet-R201的传播图像结果的传输的传输数据,并用A的CRSLVA的数值分析方法进行最大定量分析分析结果。我们使用的C-C-calalalalalalalalalmax的定量分析方法,我们用C-cal 和直判读算法的数值分析方法进行定量评估。我们使用的C-C-C-C-C-C-C-C-C-C-calevalevalevalmax的数值分析方法,我们通过4 和直径算法的数值分析结果。我们用的方法,我们用的方法,我们用的数值学方法进行了计算方法的数值分析的数值分析的数值学方法,我们用的数值分析方法,用来进行的数值分析的数值分析的数值分析方法,我们用来用来进行的数值分析方法,我们用的方法,我们用的方法,我们用来用来用来进行进行进行的数值分析的数值学和直数。我们用的数值分析的数值分析的数值分析的数值分析的数值分析的数值分析的数值分析的数值分析的数值分析的数值分析的数值分析的数值分析的数值分析的数值分析。