We deal with the shape reconstruction of inclusions in elastic bodies. Therefore, we review the monotonicity methods introduced in a former work of the authors. These monotonicity methods build the basis for the improvement of the standard one-step linearization method. The one-step linearization method consists of solving a minimization problem with standard regularization techniques, which is commonly used in practice but builds only a heuristical approach since there is no proven theory of its convergence. In contrary, the monotonicity-based regularization, where we introduce constraints for the minimization problem via the monotonicity methods, has a rigorously proven theory, i.e., we prove the existence and uniqueness of a minimizer as well as the convergence of the method for noisy data. Finally, we present numerical experiments.
翻译:我们处理的是弹性体融合的形状重建。 因此, 我们审查在作者以前的工作中引入的单一度方法。 这些单一度方法为改进标准的一步线性方法奠定了基础。 单步线性方法包括解决标准正规化技术的最小化问题, 标准正规化技术在实践中通常使用, 但由于没有证据证明其趋同理论, 仅建立超自然法则。 相反, 单调法的正规化, 通过单一度方法对最小化问题引入限制, 具有严格证明的理论, 也就是说, 我们证明最小化器的存在和独特性, 以及杂乱数据方法的趋同。 最后, 我们提出了数字实验。