In the manifold setting, we provide a series of spectral convergence results quantifying how the eigenvectors and eigenvalues of the graph Laplacian converge to the eigenfunctions and eigenvalues of the Laplace-Beltrami operator in the $L^\infty$ sense. The convergence rate is also provided. Based on these results, convergence of the proposed heat kernel approximation algorithm, as well as the convergence rate, to the exact heat kernel is guaranteed. To our knowledge, this is the first work exploring the spectral convergence in the $L^\infty$ sense and providing a numerical heat kernel reconstruction from the point cloud with theoretical guarantees.
翻译:在多重设置中,我们提供一系列光谱趋同结果,以量化Laplacian图的元素元体和元素值如何与Laplace-Beltrami操作员的元素元件和元素值相融合。根据这些结果,我们还提供了趋同率。根据这些结果,保证了拟议的热内核近似算法的趋同率与确切的热内核的趋同率。据我们所知,这是首次探索L ⁇ infty$意义的光谱趋同率和元素值,并提供理论保证,从点云中进行数字热内核重建。