In this paper we show the use of the focal underdetermined system solver to recover sparse empirical quadrature rules for parametrized integrals from existing data, consisting of the values of given parametric functions sampled on a discrete set of points. This algorithm, originally proposed for image and signal reconstruction, relies on an approximated $\ell^p$-quasi-norm minimization. The choice of $0<p<1$ fits the nature of the constraints to which quadrature rules are subject, thus providing a more natural formulation for sparse quadrature recovery compared to the one based on $\ell^1$-norm minimization. We also extend an a priori error estimate available for the $\ell^1$-norm formulation by considering the error resulting from data compression. Finally, we present two numerical examples to illustrate some practical applications. The first concerns the fundamental solution of the linear 1D Schr\"odinger equation, the second example deals with the hyper-reduction of a partial differential equation modelling a nonlinear diffusion process in the framework of the reduced basis method. For both the examples we compare our method with the one based on $\ell^1$-norm minimization and the one relaying on the use of the non-negative least square method. Matlab codes related to the numerical examples and the algorithms described are provided.


翻译:在本文中,我们展示了使用焦点未定的系统求解器从现有数据中回收稀有的对准元件的经验化二次曲线规则,其中包括在离散的一组点上取样的某一参数的数值。这种算法最初是为图像和信号重建而提出的,其依据是大约$\ell ⁇ p$-quasi-norm 最小化。选择 $0<p> <1$适合二次规则所制约的性质,从而为稀释的二次方程式回收提供了比以$\ell1$-norm 最小化为基础的规则更自然的配方程式。我们还通过考虑数据压缩产生的错误来扩展一个用于美元\ell_1$-norm的先前误差估计。最后,我们举了两个数字例子来说明一些实际应用。第一个例子涉及线性 1D Schr\\\\\\\" 量方程式的基本解决办法,第二个例子涉及在降低的基础方法框架内将部分差异方程式模拟非线性方程式扩散过程的高度缩减。我们用一个说明的方法与以$=1和以最低数字法方法比较。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月24日
Arxiv
0+阅读 · 2021年8月24日
Arxiv
0+阅读 · 2021年8月24日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员