In many clinical practices, the goal of medical interventions or therapies is often to maintain clinical measures within a desirable range, rather than maximizing or minimizing their values. To achieve this, it may be more practical to recommend a therapeutic dose interval rather than a single dose for a given patient. Since different patients may respond differently to the same dosage of medication, the therapeutic dose interval needs to be personalized based on each patient's unique characteristics. However, this problem is challenging as it requires jointly learning the lower and upper bound functions for personalized dose intervals. Currently, there are no methods available that are suitable to address this challenge. To fill this gap, we propose a novel loss function that converts the task of learning personalized two-sided dose intervals into a risk minimization problem. The loss function is defined over a tensor product reproducing kernel Hilbert space and is doubly-robust to misspecification of nuisance functions. We establish statistical properties of estimated dose interval functions that directly minimize the empirical risk associated with the loss function. Our simulation and a real-world application of personalized warfarin dose intervals show that our proposed direct estimation method outperforms naive indirect regression-based methods.
翻译:在许多临床做法中,医疗干预或治疗的目标往往是将临床措施保持在适当范围内,而不是尽量扩大或尽量减少其价值。为了达到这个目的,建议给特定病人一个治疗剂量间隔而不是一个单一剂量间隔可能更为实际。由于不同的病人对同样的药物剂量的反应可能不同,因此治疗剂量间隔需要根据每个病人的独特性来个性化。然而,这个问题具有挑战性,因为它需要共同学习个性化剂量间隔的下限和上限功能。目前,没有合适的方法来应对这一挑战。为了弥补这一差距,我们建议一种新的损失函数,将学习个性化双向剂量间隔的任务转换成一个风险最小化的问题。由于不同的病人对相同的药物剂量剂量剂量的反应可能不同,因此治疗剂量间隔需要根据每个病人的独特性来个性化。然而,这个问题具有挑战性,因为它需要共同学习个性化剂量间隔的估计剂量间隔功能的统计特性,从而直接减少与损失功能有关的经验风险。我们模拟了个人化战争剂量间隔的实际应用情况,表明我们提议的直接估计方法超越了天性反回归法的方法。</s>