Safe human-robot collaboration (HRC) has recently gained a lot of interest with the emerging Industry 5.0 paradigm. Conventional robots are being replaced with more intelligent and flexible collaborative robots (cobots). Safe and efficient collaboration between cobots and humans largely relies on the cobot's comprehensive semantic understanding of the dynamic surrounding of industrial environments. Despite the importance of semantic understanding for such applications, 3D semantic segmentation of collaborative robot workspaces lacks sufficient research and dedicated datasets. The performance limitation caused by insufficient datasets is called 'data hunger' problem. To overcome this current limitation, this work develops a new dataset specifically designed for this use case, named "COVERED", which includes point-wise annotated point clouds of a robotic cell. Lastly, we also provide a benchmark of current state-of-the-art (SOTA) algorithm performance on the dataset and demonstrate a real-time semantic segmentation of a collaborative robot workspace using a multi-LiDAR system. The promising results from using the trained Deep Networks on a real-time dynamically changing situation shows that we are on the right track. Our perception pipeline achieves 20Hz throughput with a prediction point accuracy of $>$96\% and $>$92\% mean intersection over union (mIOU) while maintaining an 8Hz throughput.
翻译:人类安全机器人合作(HRC)最近在新兴工业5.0模式中获得了很大的兴趣。 常规机器人正在被更智能和灵活的协作机器人(cobts)取代。 cobot和人类之间的安全和高效合作主要依赖于cobot对工业环境动态周围的全面语义理解。 尽管对此类应用的语义理解十分重要, 协作机器人工作空间的3D语义分割缺乏足够的研究和专用数据集。 数据集不足导致的性能限制被称为“ 数据饥饿” 问题。 为了克服目前的限制, 这项工作专门为这个使用案例设计了一套新的数据集, 名为“ COwordED ”, 其中包括一个机器人细胞的点值加点云。 最后, 我们还提供了数据集当前状态( SOTA) 算法绩效的基准, 并展示了使用多功能数据库系统对协作机器人工作空间进行实时的语义分割。 利用经过培训的深网络在实时$$(Cover $H) 期间进行动态预估, 以及我们正轨在20美元 美元 美元 的正轨中, 。</s>