The best column approximation in the Frobenius norm with $r$ columns has an error at most $\sqrt{r+1}$ times larger than the truncated singular value decomposition. Reaching this bound in practice involves either expensive random volume sampling or at least $r$ executions of singular value decomposition. In this paper it will be shown that the same column approximation bound can be reached with only a single SVD (which can also be replaced with approximate SVD). As a corollary, it will be shown how to find a highly nondegenerate submatrix in $r$ rows of size $N$ in just $O(Nr^2)$ operations, which mostly has the same properties as the maximum volume submatrix.
翻译:暂无翻译