In the context of the Cobb-Douglas productivity model we consider the $N \times N$ input-output linkage matrix $W$ for a network of $N$ firms $f_1, f_2, \cdots, f_N$. The associated influence vector $v_w$ of $W$ is defined in terms of the Leontief inverse $L_W$ of $W$ as $v_W = \frac{\alpha}{N} L_W \vec{\mathbf{1}}$ where $L_W = (I - (1-\alpha) W')^{-1}$, $W'$ denotes the transpose of $W$ and $I$ is the identity matrix. Here $\vec{\mathbf{1}}$ is the $N \times 1$ vector whose entries are all one. The influence vector is a metric of the importance for the firms in the production network. Under the realistic assumption that the data to compute the influence vector is incomplete, we prove bounds on the worst-case error for the influence vector that are sharp up to a constant factor. We also consider the situation where the missing data is binomially distributed and contextualize the bound on the influence vector accordingly. We also investigate how far off the influence vector can be when we only have data on nodes and connections that are within distance $k$ of some source node. A comparison of our results is juxtaposed against PageRank analogues. We close with a discussion on a possible extension beyond Cobb-Douglas to the Constant Elasticity of Substitution model, as well as the possibility of considering other probability distributions for missing data.
翻译:暂无翻译