The two-user broadcast channel (BC) with receivers connected by cooperative links of given capacities, known as conferencing decoders, is considered. A novel outer bound on the capacity region is established. This outer bound is derived using multiple applications of the Csisz\'{a}r-K\"{o}rner identity. New achievable rate regions are also presented. A first achievable rate region is derived by applying Marton's coding as the transmission scheme, and quantize-bin-and-forward at one receiver first and then a combination of decode-and-forward and quantize-bin-and-forward at the other receiver as cooperative strategy. A second achievable rate region is given by applying a combination of decode-and-forward and quantize-bin-and-forward at one receiver first and then quantize-bin-and-forward at the other receiver. It is proved that the outer bound coincides with the first achievable rate region for a class of semi-deterministic BCs with degraded message sets. This is the first capacity result for the two-user BC with bidirectional conferencing decoders. A capacity result is also derived for a new class of more capable semi-deterministic BCs with both common and private messages and one-sided conferencing. For the Gaussian BC with conferencing decoders, if the noises at the decoders are fully correlated (i.e., the correlation is either 1 or -1), the new outer bound yields exact capacity region for two cases: i) BC with degraded message sets; ii) BC with one-sided conferencing from the weaker receiver to the stronger receiver. An interesting consequence of these results is that for a Gaussian BC with fully negatively correlated noises and conferencing decoders of fixed cooperation link capacities, it is possible to achieve a positive rate bounded away from zero using only infinitesimal amount of transmit power.
翻译:暂无翻译