Responding to the current urgent need for low carbon emissions and high efficiency in manufacturing processes, the relationships between three different machining factors (depth of cut, feed rate, and spindle rate) on power consumption and surface finish (roughness) were analysed by applying a Bayesian seemingly unrelated regressions (SUR) model. For the analysis, an optimization criterion was established and minimized by using an optimization algorithm that combines evolutionary algorithm methods with a derivative-based (quasi-Newton) method to find the optimal conditions for energy consumption that obtains a good surface finish quality. A Bayesian ANOVA was also performed to identify the most important factors in terms of variance explanation of the observed outcomes. The data were obtained from a factorial experimental design performed in two computerized numerical control (CNC) vertical machining centers (Haas UMC-750 and Leadwell V-40iT). Some results from this study show that the feed rate is the most influential factor in power consumption, and the depth of cut is the factor with the stronger influence on roughness values. An optimal operational point is found for the three factors with a predictive error of less than 0.01% and 0.03% for the Leadwell V-40iT machine and the Haas UMC-750 machine, respectively.


翻译:针对目前对低碳排放和制造工艺高效率的迫切需要,通过采用巴伊西亚似乎无关的回归(SUR)模型分析了电力消费和表面完成(干旱)的三种不同的机械因素(深度切割、饲料率和螺旋率)之间的关系。关于分析,通过采用巴伊西亚人看似无关的回归(SUR)模型,确定了优化标准,并将优化标准降至最低。该模型采用优化算法,将进化算法方法与衍生物(qasi-Newton)法相结合,以找到最佳的能源消费条件,从而获得良好的表面完成质量。还进行了巴耶西亚人ANOVA,以找出观测结果差异解释的最重要因素。数据来自两个计算机化数字控制(CNC)垂直机械中心(Haas UMC-750和Leepwell V-40iT)进行的要素性实验设计。这项研究的一些结果表明,进料率是电力消费中最有影响力的因素,而切割深度是对粗度值影响最大的因素。对三种因素,即观测结果的结果是最佳操作点,这三个因素的预测误差分别低于0.01%和0.03%的V-M.

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员