The systematic study of alternating minimization problems was initiated by Csisz\'ar and Tusn\'ady. The area gained renewed interest recently due to its applications in machine learning. We will use this theory in the context of conditional graph entropy. The unconditioned version of this entropy notion was introduced by K\"orner. The conditional version is important due to a result of Orlitsky and Roche showing that the minimal rate for a natural functional compression problem (with side information at the receiver) is given by conditional graph entropy. In this paper we show that conditional graph entropy can be formulated as an alternating minimization problem. More specifically, we present a function of two (vector-valued) variables such that, fixing any of the two variables, the optimal choice for the other variable can be expressed explicitly. Then minimizing in the fixed variable gives us the global minimum. Depending on which variable we start with, we get two different minimization problems with the same optimum. In one case we get back the original formula for conditional graph entropy. In the other we obtain a new formula. This new formula shows that conditional graph entropy is part of a more general framework: the solution of an optimization problem over a so-called convex corner. In the unconditioned case (i.e., graph entropy) this was known due to Csisz\'ar, K\"orner, Lov\'asz, Marton, and Simonyi. In that case the role of the convex corner was played by the so-called vertex packing polytope. In the conditional version it is a more intricate convex body but the function to minimize is the same. Furthermore, if we alternate in optimally choosing one variable given the other, then we get a decreasing sequence of function values converging to the minimum, which allows one to numerically compute (conditional) graph entropy.
翻译:对交替最小化问题的系统研究是由 Csisz\'ar 和 Tusn\'ady 启动的。 区域最近因其在机器学习中的应用程序而重新获得兴趣。 我们将在有条件的图形 entrop 中使用这个理论。 K\\'orner 引入了这个未附加条件的 entrop 概念的版本。 由于 Orlitsky 和 Roche 显示自然功能压缩问题( 接收器的侧边信息) 的最小速率是由有条件的图形 ROTrop 提供的。 在本文中, 我们显示, 有条件的图形 entropyp 是一个交替最小化的问题。 更具体地说, 我们使用的是两个变量的双向值 。 新的公式显示, 修正任何一个变量 的矩greal decrevelopy 函数是普通的数值 。 最小化的Crentreal roftreal Proformal 函数是另一个普通的数值 。 根据我们使用的变量开始, 我们使用的是两个不同的变式的公式, 。 在另一个情况下, 我们的正态的正态的正态的正态的正态的正方值中, 我们的正态的正态的正方值是另一个的正态的正态的正态的正方值是另一个的正态的正态的正方函数是另一个的正方值。