Text detection in natural scene images has applications for autonomous driving, navigation help for elderly and blind people. However, the research on Urdu text detection is usually hindered by lack of data resources. We have developed a dataset of scene images with Urdu text. We present the use of machine learning methods to perform detection of Urdu text from the scene images. We extract text regions using channel enhanced Maximally Stable Extremal Region (MSER) method. First, we classify text and noise based on their geometric properties. Next, we use a support vector machine for early discarding of non-text regions. To further remove the non-text regions, we use histogram of oriented gradients (HoG) features obtained and train a second SVM classifier. This improves the overall performance on text region detection within the scene images. To support research on Urdu text, We aim to make the data freely available for research use. We also aim to highlight the challenges and the research gap for Urdu text detection.
翻译:自然场景图像中的文本检测应用了自主驱动、导航帮助老年人和盲人。然而,对乌尔都语文本检测的研究通常由于缺乏数据资源而受阻。我们开发了带有乌尔都文字的场景图像数据集。我们展示了从场景图像中探测乌尔都文字的机器学习方法。我们使用增强的频道最大稳定Extremal区域(MSER)方法提取文本区域。首先,我们根据它们的几何特性对文本和噪音进行分类。接下来,我们使用支持性矢量机来及早丢弃非文本区域。为了进一步去除非文本区域,我们使用了获得的定向梯度特征的直方图,并培训了第二个SVM分类器。这提高了现场图像中文本检测的总体性能。为了支持对乌尔都文字的研究,我们力求将数据免费提供给研究使用。我们还力求突出乌尔都文字检测的挑战和研究差距。