This work addresses the block-diagonal semidefinite program (SDP) relaxations for the clique number of the Paley graphs. The size of the maximal clique (clique number) of a graph is a classic NP-complete problem; a Paley graph is a deterministic graph where two vertices are connected if their difference is a quadratic residue modulo certain prime powers. Improving the upper bound for the Paley graph clique number for odd prime powers is an open problem in combinatorics. Moreover, since quadratic residues exhibit pseudorandom properties, Paley graphs are related to the construction of deterministic restricted isometries, an open problem in compressed sensing and sparse recovery. Recent work provides evidence that the current upper bounds can be improved by the sum-of-squares (SOS) relaxations. In particular the bounds given by the SOS relaxations of degree 4 (SOS-4) are asymptotically growing at an order smaller than square root of the prime. However computations of SOS-4 become intractable with respect to large graphs. Gvozdenovic et al. introduced a more computationally efficient block-diagonal hierarchy of SDPs that refines the SOS hierarchy. They computed the values of these SDPs of degrees 2 and 3 (L2 and L3 respectively) for the Paley graph clique numbers associated with primes p less or equal to 809. These values bound from the above the values of the corresponding SOS-4 and SOS-6 relaxations respectively. We revisit these computations and determine the values of the L2 relaxation for larger p's. Our results provide additional numerical evidence that the L2 relaxations, and therefore also the SOS-4 relaxations, are asymptotically growing at an order smaller than the square root of p.
翻译:本文研究了海莱图的团数量的分块对角半正定程序(SDP)松弛。图的最大团(团数量)大小是经典的NP完备问题;海莱图是一种确定性图,其中两个顶点相连,当且仅当它们之差在某些质数幂的二次剩余中。改进海莱图奇特数的上界对于奇素数幂是组合数学中的一个开放问题。此外,由于二次剩余显示出类似于伪随机性的特性,海莱图与确定性受限等距的构造有关,这是压缩感知和稀疏恢复中的一个开放问题。最近的研究提供了证据,表明当前上界可以通过和平方和(SOS)松弛来改进。特别是,度为4的SOS松弛(SOS-4)给出的上界与素数的平方根增长的阶次相比较小。然而,对于大型图而言,SOS-4的计算变得难以处理。 Gvozdenovic等人介绍了一种更具计算效率的分块SDP层次结构,该层次结构对SOS层次进行了改进。他们计算了阶数为2和3(L2和L3)的这些SDP值,使它们绑定在关联素数p小于或等于809的派里图团数的相应SOS-4和SOS-6松弛值的上方。我们重新审视了这些计算,并确定了L2松弛的更大p的值。我们的结果提供了额外的数值证据,认为L2松弛(因此也是SOS-4松弛)增长的阶次小于p的平方根。