StyleGAN is the open-sourced TensorFlow implementation made by NVIDIA. It has revolutionized high quality facial image generation. However, this democratization of Artificial Intelligence / Machine Learning (AI/ML) algorithms has enabled hostile threat actors to establish cyber personas or sock-puppet accounts in social media platforms. These ultra-realistic synthetic faces. This report surveys the relevance of AI/ML with respect to Cyber & Information Operations. The proliferation of AI/ML algorithms has led to a rise in DeepFakes and inauthentic social media accounts. Threats are analyzed within the Strategic and Operational Environments. Existing methods of identifying synthetic faces exists, but they rely on human beings to visually scrutinize each photo for inconsistencies. However, through use of the DLIB 68-landmark pre-trained file, it is possible to analyze and detect synthetic faces by exploiting repetitive behaviors in StyleGAN images. Project Blade Runner encompasses two scripts necessary to counter StyleGAN images. Through PapersPlease.py acting as the analyzer, it is possible to derive indicators-of-attack (IOA) from scraped image samples. These IOAs can be fed back into among_us.py acting as the detector to identify synthetic faces from live operational samples. The opensource copy of Blade Runner may lack additional unit tests and some functionality, but the open-source copy is a redacted version, far leaner, better optimized, and a proof-of-concept for the information security community. The desired end-state will be to incrementally add automation to stay on-par with its closed-source predecessor.


翻译:StyleGAN 是由 NVIDIA 建立的开放源码 Tensor Flow 执行系统。 它使高质量的面部图像生成发生了革命性的变化。 但是, 人工智能/机器学习(AI/ML)算法的民主化使得敌对威胁行为方能够在社交媒体平台上建立网络人账户或袜子玩偶账户。 这些超现实的合成面孔。 报告调查了 AI/ ML 与网络和信息操作的相关性。 AI/ ML 算法的扩散导致DeepFakes 和不真实的社会媒体账户的上升。 威胁在战略和业务环境中分析。 现有的识别合成面孔(AI/ML) 算法的民主化使得人类能够对每张照片进行视觉检查。 然而, 通过使用 DLIB 68-landmart 预培训的文档, 可以通过StyleGAN 图像中的重复行为来分析和检测合成面孔。 Project Blade Runner 包含两个必要的脚本来反驳SylentGAN 图像。 在DegradefersMy. pypal State lapper lapper as, 在战略上分析器中, 有可能在从运行中从运行中从运行中提取指标指标指标指标指标(IIIOA) 复制到图像的样本样本样本样本中, 可以将一个更精确的复制到操作的样本样本样本, 。 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Arxiv
46+阅读 · 2021年10月4日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员