We consider the general nonconvex nonconcave minimax problem over continuous variables. A major challenge for this problem is that a saddle point may not exist. In order to resolve this difficulty, we consider the related problem of finding a Mixed Nash Equilibrium, which is a randomized strategy represented by probability distributions over the continuous variables. We propose a Particle-based Primal-Dual Algorithm (PPDA) for a weakly entropy-regularized min-max optimization procedure over the probability distributions, which employs the stochastic movements of particles to represent the updates of random strategies for the mixed Nash Equilibrium. A rigorous convergence analysis of the proposed algorithm is provided. Compared to previous works that try to update particle weights without movements, PPDA is the first implementable particle-based algorithm with non-asymptotic quantitative convergence results, running time, and sample complexity guarantees. Our framework gives new insights into the design of particle-based algorithms for continuous min-max optimization in the general nonconvex nonconcave setting.


翻译:我们考虑的是相对于连续变量的通用非convex非concable小型最大鼠标问题。 这一问题的主要挑战是, 可能不存在一个支撑点。 为了解决这一困难, 我们考虑找到混合纳什平衡器的相关问题, 这是一种随机战略, 其代表的是对连续变量的概率分布。 我们建议了一种基于粒子的 Primal- Dual Algorithm (PPDA), 用于对概率分布进行微弱的加密常规微鼠优化程序, 该程序使用粒子的随机运动来代表混合纳什平衡器的随机战略的更新。 提供了对拟议算法的严格趋同分析。 与试图在不移动的情况下更新粒子重量的先前工作相比, PPDA 是第一个可实施的基于粒子的算法, 其非无症状定量趋同结果、 运行时间和样本复杂性保证。 我们的框架为基于粒子的算法设计提供了新的洞察, 用于在一般非convex非conve 设置中持续微轴优化的连续微轴算法。</s>

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
29+阅读 · 2022年9月10日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员