We consider the general nonconvex nonconcave minimax problem over continuous variables. A major challenge for this problem is that a saddle point may not exist. In order to resolve this difficulty, we consider the related problem of finding a Mixed Nash Equilibrium, which is a randomized strategy represented by probability distributions over the continuous variables. We propose a Particle-based Primal-Dual Algorithm (PPDA) for a weakly entropy-regularized min-max optimization procedure over the probability distributions, which employs the stochastic movements of particles to represent the updates of random strategies for the mixed Nash Equilibrium. A rigorous convergence analysis of the proposed algorithm is provided. Compared to previous works that try to update particle weights without movements, PPDA is the first implementable particle-based algorithm with non-asymptotic quantitative convergence results, running time, and sample complexity guarantees. Our framework gives new insights into the design of particle-based algorithms for continuous min-max optimization in the general nonconvex nonconcave setting.
翻译:我们考虑的是相对于连续变量的通用非convex非concable小型最大鼠标问题。 这一问题的主要挑战是, 可能不存在一个支撑点。 为了解决这一困难, 我们考虑找到混合纳什平衡器的相关问题, 这是一种随机战略, 其代表的是对连续变量的概率分布。 我们建议了一种基于粒子的 Primal- Dual Algorithm (PPDA), 用于对概率分布进行微弱的加密常规微鼠优化程序, 该程序使用粒子的随机运动来代表混合纳什平衡器的随机战略的更新。 提供了对拟议算法的严格趋同分析。 与试图在不移动的情况下更新粒子重量的先前工作相比, PPDA 是第一个可实施的基于粒子的算法, 其非无症状定量趋同结果、 运行时间和样本复杂性保证。 我们的框架为基于粒子的算法设计提供了新的洞察, 用于在一般非convex非conve 设置中持续微轴优化的连续微轴算法。</s>