An algorithm is proposed to optimize quantum Monte Carlo (QMC) wave functions based on New ton's method and analytical computation of the first and second derivatives of the variati onal energy. This direct application of the variational principle yields significantly low er energy than variance minimization methods when applied to the same trial wave function. Quadratic convergence to the local minimum of the variational parameters is achieved. A g eneral theorem is presented, which substantially simplifies the analytic expressions of de rivatives in the case of wave function optimization. To demonstrate the method, the ground state energies of the first-row elements are calculated.
翻译:根据新吨的方法和分析计算,提出了优化量子蒙特卡洛(QMC)波函数的算法。这种直接应用变异原理产生的能量比适用于同一试验波函数时的最小化方法低得多。实现二次曲线与当地最低变异参数的趋同。 显示了一个精度定理, 大大简化了在波函数优化情况下非正态分析的表达方式。 为了演示该方法,计算了第一行元素的地面状态能量 。