Scientific articles published prior to the "age of digitization" in the late 1990s contain figures which are "trapped" within their scanned pages. While progress to extract figures and their captions has been made, there is currently no robust method for this process. We present a YOLO-based method for use on scanned pages, after they have been processed with Optical Character Recognition (OCR), which uses both grayscale and OCR-features. We focus our efforts on translating the intersection-over-union (IOU) metric from the field of object detection to document layout analysis and quantify "high localization" levels as an IOU of 0.9. When applied to the astrophysics literature holdings of the NASA Astrophysics Data System (ADS), we find F1 scores of 90.9% (92.2%) for figures (figure captions) with the IOU cut-off of 0.9 which is a significant improvement over other state-of-the-art methods.


翻译:1990年代后期“数字化时代”前发表的科学文章含有扫描页内“固定”的数字。虽然在提取数字及其说明方面取得了进展,但目前没有强有力的方法。我们提出了一个以YOLO为基础的方法,供扫描页使用,在用光学特征识别(OCR)处理后使用,该方法使用灰度和光化光化特征。我们集中努力将物体探测领域的交叉重叠(IOU)指标翻译为文件布局分析,并将“高度本地化”等级量化为0.9。在应用美国航天局天体物理学数据系统的天体物理学文献记录时,我们发现数字(图示)的F1分为90.9%(92.2%),而IOU截断0.9是与其他最新方法相比的一项重大改进。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2021年6月15日
Arxiv
15+阅读 · 2020年2月6日
Arxiv
12+阅读 · 2019年2月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员