There has been an increased interest in discovering heuristics for combinatorial problems on graphs through machine learning. While existing techniques have primarily focused on obtaining high-quality solutions, scalability to billion-sized graphs has not been adequately addressed. In addition, the impact of budget-constraint, which is necessary for many practical scenarios, remains to be studied. In this paper, we propose a framework called GCOMB to bridge these gaps. GCOMB trains a Graph Convolutional Network (GCN) using a novel probabilistic greedy mechanism to predict the quality of a node. To further facilitate the combinatorial nature of the problem, GCOMB utilizes a Q-learning framework, which is made efficient through importance sampling. We perform extensive experiments on real graphs to benchmark the efficiency and efficacy of GCOMB. Our results establish that GCOMB is 100 times faster and marginally better in quality than state-of-the-art algorithms for learning combinatorial algorithms. Additionally, a case-study on the practical combinatorial problem of Influence Maximization (IM) shows GCOMB is 150 times faster than the specialized IM algorithm IMM with similar quality.


翻译:通过机器学习,人们越来越有兴趣发现图表中组合问题的外观。虽然现有技术主要侧重于获得高质量的解决方案,但尚未充分解决可扩缩到10亿大小的图表的问题。此外,对于许多实际情景所必需的预算限制的影响仍有待研究。我们在此文件中提议了一个称为GCOMB的框架,以弥补这些差距。GCOMB用一种新颖的、具有概率的贪婪机制来预测结点的质量来培训一个图表革命网络(GCN )。为进一步促进问题的组合性质,GCOMB使用一个Q学习框架,通过重要取样提高效率。我们在实际图表上进行了广泛的实验,以衡量GCOMB的效率和效能。我们的结果表明,GCOMB在质量上比学习组合算法的最先进的算法快100倍,质量略高一点。此外,关于影响最大化(IM)的实际组合问题的案例研究显示,GCOMB比专门性IM 算法质量要快150倍。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Paraphrase Generation with Deep Reinforcement Learning
Arxiv
11+阅读 · 2018年7月8日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
15+阅读 · 2018年6月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员