We develop a novel and efficient discontinuous Galerkin spectral element method (DG-SEM) for the spherical rotating shallow water equations in vector invariant form. We prove that the DG-SEM is energy stable, and discretely conserves mass, vorticity, and linear geostrophic balance on general curvlinear meshes. These theoretical results are possible due to our novel entropy stable numerical DG fluxes for the shallow water equations in vector invariant form. We experimentally verify these results on a cubed sphere mesh. Additionally, we show that our method is robust, that is can be run stably without any dissipation. The entropy stable fluxes are sufficient to control the grid scale noise generated by geostrophic turbulence without the need for artificial stabilisation.
翻译:我们开发了一种新颖高效的离散 Galerkin 光谱元方法 (DG-SEM),用于求解球面旋转浅水方程。我们证明了 DG-SEM 在一般曲线网格上是能量稳定的,并且能够离散保持质量、涡度和线性地转动天平。这些理论结果是由于我们使用了浅水方程矢量不变形式的新型熵稳定数值 DG 通量。我们在立方体网格上进行了实验验证这些结果。此外,我们表明我们的方法是鲁棒的,可以在不需要任何耗散的情况下稳定运行。熵稳定通量足以控制由地转涡流生成的网格尺度噪声,而不需要人造稳定化。