Convolutional Neural Networks have demonstrated human-level performance in the classification of melanoma and other skin lesions, but evident performance disparities between differing skin tones should be addressed before widespread deployment. In this work, we propose an efficient yet effective algorithm for automatically labelling the skin tone of lesion images, and use this to annotate the benchmark ISIC dataset. We subsequently use these automated labels as the target for two leading bias unlearning techniques towards mitigating skin tone bias. Our experimental results provide evidence that our skin tone detection algorithm outperforms existing solutions and that unlearning skin tone improves generalisation and can reduce the performance disparity between melanoma detection in lighter and darker skin tones.
翻译:进化神经网络已经展示了人类在色素瘤和其他皮肤损伤分类方面的表现水平,但在广泛使用之前,应解决不同皮肤色素之间明显的性能差异。 在这项工作中,我们提出一个高效而有效的算法,自动标注损伤图像的皮肤音调,并以此来说明国际标准行业分类的基准数据集。我们随后使用这些自动标签作为两个主要的偏向学技术的目标,以减少皮肤语气偏差。我们的实验结果提供了证据,证明我们的皮肤音量检测算法优于现有的解决方案,不学习的皮肤音能改善一般化,并能够减少在较轻和较暗的皮肤色调中检测黑色素之间的性能差异。