Object detection is a significant downstream task in computer vision. For the on-board edge computing platforms, a giant model is difficult to achieve the real-time detection requirement. And, a lightweight model built from a large number of the depth-wise separable convolution layers cannot achieve the sufficient accuracy. We introduce a new lightweight convolution technique, GSConv, to lighten the model but maintain the accuracy. The GSConv accomplishes an excellent trade-off between the model's accuracy and speed. And, we provide a design paradigm, slim-neck, to achieve a higher computational cost-effectiveness of the detectors. The effectiveness of our approach was robustly demonstrated in over twenty sets comparative experiments. In particular, the detectors of ameliorated by our approach obtains state-of-the-art results (e.g. 70.9% mAP0.5 for the SODA10M at a speed of ~ 100FPS on a Tesla T4 GPU) compared with the originals. Code is available at https://github.com/alanli1997/slim-neck-by-gsconv
翻译:在计算机视野中,发现物体是一个重要的下游任务。 对于机边计算平台来说,一个巨大的模型很难实现实时探测要求。 而且,从大量深度和分解的相变层中建造的轻量模型不能达到足够的准确性。 我们引入了一种新的轻量变速技术, GSConv, 以轻化模型, 并保持其准确性。 GSConv在模型的准确性和速度之间实现了极佳的权衡。 而且, 我们提供了一个设计范例, 薄颈, 以便实现探测器更高的计算成本效率。 我们的方法的有效性在20多套比较实验中得到了有力的证明。 特别是, 我们的方法改进的探测器取得了最新的结果( 例如, 70.9% mAP0.5 用于SODA10M, 速度为~ 100 FPS, Tesla T4 GPUPUS) 与原始数据相比, 代码可在 https://github.com/alanli1997/slim-neck- bygconv。