Learning 3D human pose prior is essential to human-centered AI. Here, we present GFPose, a versatile framework to model plausible 3D human poses for various applications. At the core of GFPose is a time-dependent score network, which estimates the gradient on each body joint and progressively denoises the perturbed 3D human pose to match a given task specification. During the denoising process, GFPose implicitly incorporates pose priors in gradients and unifies various discriminative and generative tasks in an elegant framework. Despite the simplicity, GFPose demonstrates great potential in several downstream tasks. Our experiments empirically show that 1) as a multi-hypothesis pose estimator, GFPose outperforms existing SOTAs by 20% on Human3.6M dataset. 2) as a single-hypothesis pose estimator, GFPose achieves comparable results to deterministic SOTAs, even with a vanilla backbone. 3) GFPose is able to produce diverse and realistic samples in pose denoising, completion and generation tasks. Project page https://sites.google.com/view/gfpose/
翻译:学习 3D 人姿势是人以人为中心 AI 所必须的。 在这里, 我们介绍 GFPose, 这是一个用于模拟各种应用的合理的 3D 人姿势的多功能框架。 在 GFPose 的核心是一个基于时间的分数网络, 对每个身体的梯度进行估算, 并逐渐使环绕的 3D 人姿势与特定任务规格相匹配。 在分解过程中, GFPose 隐含地包含在梯度中的前位, 并在优雅的框架内将各种歧视和基因化任务统一化。 尽管这个框架很简单, GFPPose 展示了在多个下游任务中的巨大潜力。 我们的实验经验显示 1) 作为一种多重合用测算器, GFPPose 在 Human3. 3M 数据集上将现有的 SOTAs 的梯度比20 % 。 2) 作为单位测算器, GFPSPSAs 取得类似的结果, 即使带有香草骨骨。 3) GFPSose 能够产生多样化和现实的样本, 以显示解析、 完成和新一代任务。 项目页面 http:// sitesitessss. ggleus. glegle. glegle. gleg/ page/ gleglegleg/ page/ page/ page/ page/ page/ page/ sex.